1.1 PREFACE

Optimization is central to any problem involving decision making, whether in engineering or in economics. The task of decision making entails choosing between various alternatives. This choice is governed by our desire to make the "best" decision. The measure of goodness of the alternatives is described by an objective function or performance index. Optimization theory and methods deal with selecting the best alternative in the sense of the given objective function.

The area of optimization has received enormous attention in recent years, primarily because of the rapid progress in computer technology, including the development and availability of user-friendly software, high-speed and parallel processors, and artificial neural networks. A clear example of this phenomenon is the wide accessibility of optimization software tools such as the Optimization Toolbox of MATLAB and the many other commercial software packages.

Optimization is the act of obtaining the best result under given circumstances. In design, construction, and maintenance of any engineering system, engineers have to take many technological and managerial decisions at several stages. The ultimate goal of all such decisions is either to minimize the effort required or to maximize the desired benefit. Since the effort required or the benefit desired in any practical situation can be expressed as a function of certain decision variables, optimization can be defined as the process of finding the conditions that give the maximum or minimum value of a function. It can be seen from Fig. 1.1 that if a point x∗ corresponds to the minimum value of function f (x), the same point also corresponds to the maximum value of the negative of the function, −f (x). Thus without loss of generality, optimization can be taken to mean minimization since the maximum of a function can be found by seeking the minimum of the negative of the same function.
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In addition, the following operations on the objective function will not change the optimum solution x∗ (see Fig. 1.2):
1. Multiplication (or division) of  f (x) by a positive constant c.
2. Addition (or subtraction) of a positive constant c to (or from) f (x).
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There is no single method available for solving all optimization problems efficiently. Hence a number of optimization methods have been developed for solving different types of optimization problems. The optimum seeking methods are also known as mathematical programming techniques and are generally studied as a part of operations research. Operations research is a branch of mathematics concerned with the application of scientific methods and techniques to decision making problems and with establishing the best or optimal solutions.


Table 1.1 lists various mathematical programming techniques together with other well-defined areas of operations research. The classification given in Table 1.1 is not unique; it is given mainly for convenience.

Mathematical programming techniques are useful in finding the minimum of a function of several variables under a prescribed set of constraints. Stochastic process techniques can be used to analyze problems described by a set of random variables having known probability distributions. Statistical methods enable one to analyze the experimental data and build empirical models to obtain the most accurate representation of the physical situation. 
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1.2 HISTORICAL DEVELOPMENT

The existence of optimization methods can be traced to the days of Newton, Lagrange, and Cauchy. The development of differential calculus methods of optimization was possible because of the contributions of Newton and Leibnitz to calculus. The foundations of calculus of variations, which deals with the minimization of functionals, were laid by Bernoulli, Euler, Lagrange, and Weirstrass. The method of optimization for constrained problems, which involves the addition of unknown multipliers, became known by the name of its inventor, Lagrange. Cauchy made the first application of the steepest descent method to solve unconstrained minimization problems. Despite these early contributions, very little progress was made until the middle of the twentieth century, when high-speed digital computers made implementation of the optimization procedures possible and stimulated further research on new methods. Spectacular advances followed, producing a massive literature on optimization techniques. This advancement also resulted in the emergence of several well-defined new areas in optimization theory.

It is interesting to note that the major developments in the area of numerical methods of unconstrained optimization have been made in the United Kingdom only in the 1960s. The development of the simplex method by Dantzig in 1947 for linear programming problems and the annunciation of the principle of optimality in 1957 by Bellman for dynamic programming problems paved the way for development of the methods of constrained optimization.

The modern optimization methods, also sometimes called nontraditional optimization methods, have emerged as powerful and popular methods for solving complex engineering optimization problems in recent years. These methods include genetic algorithms, simulated annealing, particle swarm optimization, ant colony optimization, neural network-based optimization, and fuzzy optimization. The genetic algorithms are computerized search and optimization algorithms based on the mechanics of natural genetics and natural selection. The genetic algorithms were originally proposed by John Holland in 1975. The simulated annealing method is based on the mechanics of the cooling process of molten metals through annealing. The method was originally developed by Kirkpatrick, Gelatt, and Vecchi. The particle swarm optimization algorithm mimics the behavior of social organisms such as a colony or swarm of insects (for example, ants, termites, bees, and wasps), a flock of birds, and a school of fish. The algorithm was originally proposed by Kennedy and Eberhart in 1995. The ant colony optimization is based on the cooperative behavior of ant colonies, which are able to find the shortest path from their nest to a food source. The method was first developed by Marco Dorigo in 1992. The neural network methods are based on the immense computational power of the nervous system to solve perceptional problems in the presence of massive amount of sensory data through its parallel processing capability. The method was originally used for optimization by Hopfield and Tank in 1985. The fuzzy optimization methods were developed to solve optimization problems involving design data, objective function, and constraints stated in imprecise form involving vague and linguistic descriptions. The fuzzy approaches for single and multiobjective optimization in engineering design were first presented by Rao in 1986.
1.3 ENGINEERING APPLICATIONS OF OPTIMIZATION

Optimization, in its broadest sense, can be applied to solve any engineering problem. Some typical applications from different engineering disciplines indicate the wide scope of the subject:

1. Design of aircraft and aerospace structures for minimum weight
2. Finding the optimal trajectories of space vehicles
3. Design of civil engineering structures such as frames, foundations, bridges, towers, chimneys, and dams for minimum cost
4. Minimum-weight design of structures for earthquake, wind, and other types of random loading
5. Design of water resources systems for maximum benefit
6. Optimal plastic design of structures
7. Optimum design of linkages, cams, gears, machine tools, and other mechanical components
8. Selection of machining conditions in metal-cutting processes for minimum production cost
9. Design of material handling equipment, such as conveyors, trucks, and cranes, for minimum cost
10. Design of pumps, turbines, and heat transfer equipment for maximum efficiency
11. Optimum design of electrical machinery such as motors, generators, and transformers
12. Optimum design of electrical networks
13. Shortest route taken by a salesperson visiting various cities during one tour
14. Optimal production planning, controlling, and scheduling
15. Analysis of statistical data and building empirical models from experimental results to obtain the most accurate representation of the physical phenomenon
16. Optimum design of chemical processing equipment and plants
17. Design of optimum pipeline networks for process industries
18. Selection of a site for an industry
19. Planning of maintenance and replacement of equipment to reduce operating costs
20. Inventory control
21. Allocation of resources or services among several activities to maximize the benefit Controlling the waiting and idle times and queueing in production lines to reduce the costs 
22. Planning the best strategy to obtain maximum profit in the presence of a competitor
23. Optimum design of control systems


1.4 STATEMENT OF AN OPTIMIZATION PROBLEM

An optimization or a mathematical programming problem can be stated as follows.
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Where X is an n-dimensional vector called the design vector, f (X) is termed the objective function, and gj (X) and lj (X) are known as inequality and equality constraints, respectively. The number of variables n and the number of constraints m and/or p need not be related in any way. The problem stated in Eq. (1.1) is called a constrained optimization problem. Some optimization problems do not involve any constraints and can be stated as
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1.4.1 Design Vector

Any engineering system or component is defined by a set of quantities some of which are viewed as variables during the design process. In general, certain quantities are usually fixed at the outset and these are called preassigned parameters. All the other quantities are treated as variables in the design process and are called design or decision variables xi , i = 1, 2, . . . , n. The design variables are collectively represented as a design vector X = {x1, x2, . . . , xn}T. As an example, consider the design of the gear pair shown in Fig. 1.3, characterized by its face width b, number of teeth T1 and T2, center distance d, pressure angle ψ, tooth profile, and material. If center distance d, pressure angle ψ, tooth profile, and material of the gears are fixed in advance, these quantities can be called preassigned parameters. The remaining quantities can be collectively represented by a design vector X = {x1, x2, x3}T = {b, T1, T2}T.
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1.4.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily; rather, they have to satisfy certain specified functional and other requirements. The restrictions that must be satisfied to produce an acceptable design are collectively called design constraints. Constraints that represent limitations on the behavior or performance of the system are termed behavior or functional constraints. Constraints that represent physical limitations on design variables, such as availability, fabricability, and transportability, are known as geometric or side constraints. For example, for the gear pair shown in Fig. 1.3, the face width b cannot be taken smaller than a certain value, due to strength requirements. Similarly, the ratio of the numbers of teeth, T1/T2, is dictated by the speeds of the input and output shafts, N1 and N2. Since these constraints depend on the performance of the gear pair, they are called behavior constraints. The values of T1 and T2 cannot be any real numbers but can only be integers. Further, there can be upper and lower bounds on T1 and T2 due to manufacturing limitations. Since these constraints depend on the physical limitations, they are called side constraints.
1.4.3 Constraint Surface

For illustration, consider an optimization problem with only inequality constraints gj (X) ≤ 0. The set of values of X that satisfy the equation gj (X) = 0 forms a hypersurface in the design space and is called a constraint surface. Note that this is an (n − 1)-dimensional subspace, where n is the number of design variables. The constraint surface divides the design space into two regions: one in which gj (X) < 0 and the other in which gj (X)>0. Thus the points lying on the hypersurface will satisfy the constraint gj (X) critically, whereas the points lying in the region where gj (X)>0 are infeasible or unacceptable, and the points lying in the region where gj (X) < 0 are feasible or acceptable. The collection of all the constraint surfaces gj (X) = 0, j = 1, 2, . . . ,m, which separates the acceptable region is called the composite constraint surface. Figure 1.4 shows a hypothetical two-dimensional design space where the infeasible region is indicated by hatched lines. A design point that lies on one or more than one constraint surface is called a bound point, and the associated constraint is called an active constraint. Design points that do not lie on any constraint surface are known as free points. Depending on whether a particular design point belongs to the acceptable or unacceptable region, it can be identified as one of the following four types:
1. Free and acceptable point
2. Free and unacceptable point
3. Bound and acceptable point
4. Bound and unacceptable point

All four types of points are shown in Fig. 1.4.
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1.4.4 Objective Function

The conventional design procedures aim at finding an acceptable or adequate design that merely satisfies the functional and other requirements of the problem. In general, there will be more than one acceptable design, and the purpose of optimization is to choose the best one of the many acceptable designs available. Thus a criterion has to be chosen for comparing the different alternative acceptable designs and for selecting the best one. The criterion with respect to which the design is optimized, when expressed as a function of the design variables, is known as the criterion or merit or objective function. The choice of objective function is governed by the nature of problem. The objective function for minimization is generally taken as weight in aircraft and aerospace structural design problems. In civil engineering structural designs, the objective is usually taken as the minimization of cost. Similarly, in structural design, the minimum weight design may not correspond to minimum stress design, and the minimum stress design, again, may not correspond to maximum frequency design. Thus the selection of the objective function can be one of the most important decisions in the whole optimum design process.

In some situations, there may be more than one criterion to be satisfied simultaneously. For example, a gear pair may have to be designed for minimum weight and maximum efficiency while transmitting a specified horsepower. An optimization problem involving multiple objective functions is known as a multiobjective programming problem. With multiple objectives there arises a possibility of conflict, and one simple way to handle the problem is to construct an overall objective function as a linear combination of the conflicting multiple objective functions. Thus if f1(X) and f2(X) denote two objective functions, construct a new (overall) objective function for optimization as
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1.4.5 Objective Function Surfaces

The locus of all points satisfying f (X) = C = constant forms a hypersurface in the design space, and each value of C corresponds to a different member of a family of surfaces. These surfaces, called objective function surfaces, are shown in a hypothetical two-dimensional design space in Fig. 1.5.

Once the objective function surfaces are drawn along with the constraint surfaces, the optimum point can be determined without much difficulty. But the main problem is that as the number of design variables exceeds two or three, the constraint and objective function surfaces become complex even for visualization and the problem has to be solved purely as a mathematical problem.
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1.5 CLASSIFICATION OF OPTIMIZATION PROBLEMS

Optimization problems can be classified in several ways, as described below.
1.5.1 Classification Based on the Existence of Constraints

As indicated earlier, any optimization problem can be classified as constrained or unconstrained, depending on whether constraints exist in the problem.
1.5.2 Classification Based on the Nature of the Design Variables

Based on the nature of design variables encountered, optimization problems can be classified into two broad categories. In the first category, the problem is to find values to a set of design parameters that make some prescribed function of these parameters minimum subject to certain constraints. For example, the problem of minimum weight design of a prismatic beam shown in Fig. 1.6a subject to a limitation on the maximum deflection can be stated as follows:
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where ρ is the density and δtip is the tip deflection of the beam. Such problems are called parameter or static optimization problems. In the second category of problems, the objective is to find a set of design parameters, which are all continuous functions of some other parameter, which minimizes an objective function subject to a set of constraints. If the cross-sectional dimensions of the rectangular beam are allowed to vary along its length as shown in Fig. 1.6b, the optimization problem can be stated as
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Figure 1.6 Cantilever beam under concentrated load.
Here the design variables are functions of the length parameter t . This type of problem, where each design variable is a function of one or more parameters, is known as a trajectory or dynamic optimization problem.

1.5.3 Classification Based on the Physical Structure of the Problem

Depending on the physical structure of the problem, optimization problems can be classified as optimal control and nonoptimal control problems.

Optimal Control Problem. An optimal control (OC) problem is a mathematical programming problem involving a number of stages, where each stage evolves from the preceding stage in a prescribed manner. It is usually described by two types of variables: the control (design) and the state variables. The control variables define the system and govern the evolution of the system from one stage to the next, and the state variables describe the behavior or status of the system in any stage. The problem is to find a set of control or design variables such that the total objective function (also known as the performance index, PI) over all the stages is minimized subject to a set of constraints on the control and state variables. An OC problem can be stated as follows
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Example 1.1 A rocket is designed to travel a distance of 12s in a vertically upward direction. The thrust of the rocket can be changed only at the discrete points located at distances of 0, s, 2s, 3s, . . . , 12s. If the maximum thrust that can be developed at point i either in the positive or negative direction is restricted to a value of Fi, formulate the problem of minimizing the total time of travel under the following assumptions:

1. The rocket travels against the gravitational force.
2. The mass of the rocket reduces in proportion to the distance traveled.
3. The air resistance is proportional to the velocity of the rocket.

SOLUTION Let points (or control points) on the path at which the thrusts of the rocket are changed be numbered as 1, 2, 3, . . . , 13 (Fig. 1.7). Denoting xi as the thrust, vi the velocity, ai the acceleration, and mi the mass of the rocket at point i, Newton’s second law of motion can be applied as
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Figure 1.7 Control points in the path of the rocket.
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1.5.4 Classification Based on the Nature of the Equations Involved

Another important classification of optimization problems is based on the nature of expressions for the objective function and the constraints. According to this classification, optimization problems can be classified as linear, nonlinear, geometric, and quadratic programming problems. This classification is extremely useful from the computational point of view since there are many special methods available for the efficient solution of a particular class of problems. Thus the first task of a designer would be to investigate the class of problem encountered. This will, in many cases, dictate the types of solution procedures to be adopted in solving the problem.

Nonlinear Programming Problem. If any of the functions among the objective and constraint functions in Eq. (1.1) is nonlinear, the problem is called a nonlinear programming (NLP) problem. This is the most general programming problem and all other problems can be considered as special cases of the NLP problem.
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Example 1.2 A manufacturing firm produces two products, A and B, using two limited resources. The maximum amounts of resources 1 and 2 available per day are 1000 and 250 units, respectively. The production of 1 unit of product A requires 1 unit of resource 1 and 0.2 unit of resource 2, and the production of 1 unit of product B requires 0.5 unit of resource 1 and 0.5 unit of resource 2. The unit costs of resources 1 and 2 are given by the relations (0.375 − 0.00005u1) and (0.75 − 0.0001u2), respectively, where ui denotes the number of units of resource i used (i = 1, 2). The selling prices per unit of products A and B, pA and pB, are given by
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1.5.5 Classification Based on the Permissible Values of the Design Variables

Depending on the values permitted for the design variables, optimization problems can be classified as integer and real-valued programming problems.

Integer Programming Problem. If some or all of the design variables x1, x2, . . . , xn of an optimization problem are restricted to take on only integer (or discrete) values, the problem is called an integer programming problem. On the other hand, if all the design variables are permitted to take any real value, the optimization problem is called a real-valued programming problem

1.5.6 Classification Based on the Deterministic Nature of the Variables.

Based on the deterministic nature of the variables involved, optimization problems can be classified as deterministic and stochastic programming problems.

Stochastic Programming Problem. A stochastic programming problem is an optimization problem in which some or all of the parameters (design variables and/or preassigned parameters) are probabilistic (nondeterministic or stochastic).

Example 1.3 Formulate the problem of designing a minimum-cost rectangular underreinforced concrete beam that can carry a bending moment M with a probability of at least 0.95. The costs of concrete, steel, and formwork are given by Cc = $200/m3,Cs = $5000/m3, and Cf = $40/m2 of surface area. The bending moment M is a probabilistic quantity and varies between 1 × 105 and 2 × 105 N-m with a uniform probability. The strengths of concrete and steel are also uniformly distributed probabilistic quantities whose lower and upper limits are given by
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Fig. 1.8
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Figure 1.8 Cross section of a reinforced concrete beam.
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1.5.7 Classification Based on the Separability of the Functions

Optimization problems can be classified as separable and nonseparable programming problems based on the separability of the objective and constraint functions.
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1.5.8 Classification Based on the Number of Objective Functions

Depending on the number of objective functions to be minimized, optimization problems can be classified as single- and multiobjective programming problems.

















2 
2.1 SINGLE-VARIABLE OPTIMIZATION

A function of one variable f (x) is said to have a relative or local minimum at x = x∗ if f (x∗) ≤ f (x∗ + h) for all sufficiently small positive and negative values of h. Similarly, a point x∗ is called a relative or local maximum if f (x∗) ≥ f (x∗ + h) for all values of h sufficiently close to zero. A function f (x) is said to have a global or absolute minimum at x∗ if f (x∗) ≤ f (x) for all x, and not just for all x close to x∗, in the domain over which f (x) is defined. Similarly, a point x∗ will be a global maximum of f (x) if f (x∗) ≥ f (x) for all x in the domain. Figure 2.1 shows the difference between the local and global optimum points.

A single-variable optimization problem is one in which the value of x = x∗ is to be found in the interval [a, b] such that x∗ minimizes f (x). The following two theorems provide the necessary and sufficient conditions for the relative minimum of a function of a single variable.

Theorem 2.1 Necessary Condition If a function f (x) is defined in the interval a ≤ x ≤ b and has a relative minimum at x = x∗, where a < x∗ < b, and if the derivative df (x)/dx = f ′(x) exists as a finite number at x = x∗, then f ′(x∗) = 0.

[image: ]

[image: ]
[image: ]
[image: ]

[image: ]




[image: ]

[image: ]
[image: ]
[image: ]

2.2 MULTIVARIABLE OPTIMIZATION WITH NO CONSTRAINTS
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Example 2.1 Figure 2.4 shows two frictionless rigid bodies (carts) A and B connected by three linear elastic springs having spring constants k1, k2, and k3. The springs are at their natural positions when the applied force P is zero. Find the displacements x1 and x2 under the force P by using the principle of minimum potential energy.
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2.2.1 Saddle Point
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2.3 MULTIVARIABLE OPTIMIZATION WITH EQUALITY CONSTRAINTS
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Here m is less than or equal to n; otherwise (if m>n), the problem becomes overdefined and, in general, there will be no solution. There are several methods available for the solution of this problem.

2.3.1 Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is theoretically possible to solve simultaneously the m equality constraints and express any set of m variables in terms of the remaining n − m variables. When these expressions are substituted into the original objective function, there results a new objective function involving only n − m variables.

Example 2.2 Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit radius.

[image: ]

[image: ]



[image: ]

2.3.2 Solution by the Method of Lagrange Multipliers

[image: ](2.17)
For this problem, the necessary condition for the existence of an extreme point at X = X∗
[image: ]                                                         (2.18)

[image: ]                          (2.19)
Equation (2.18) can be expressed as

[image: ]                                                                           (2.20)

and Eq. (2.19) can be written as

[image: ]                                                                          (2.21)

In addition, the constraint equation has to be satisfied at the extreme point, that is,

[image: ]                                                                                    (2.21)

Example 2.3                                              
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[image: ]                         (2.22)
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[image: ]                                   (2.23)
[image: ][image: ]Eq. (2.22)
[image: ]                                             (2.24)
[image: ]                                                                 (2.25)
[image: ]Equations (2.24) and (2.25) represent n + m equations in terms of the n + m unknowns, 
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Theorem 2.5 Sufficient Condition A sufficient condition for f (X) to have a relative minimum at X∗ is that the quadratic, Q, defined by


[image: ]                                                                                              (2.26)
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2. It has been shown by Hancock  that a necessary condition for the quadratic form Q, defined by Eq. (2.26), to be positive (negative) definite for all admissible variations dX is that each root of the polynomial zi , defined by the following determinantal equation, be positive (negative):

[image: ]      (2.27)
[image: ]                                                             (2.28)
[image: ]                                                                                  (2.29)
3. Equation (2.27), on expansion, leads to an (n − m)th-order polynomial in z. If some of the roots of this polynomial are positive while the others are negative, the point X∗ is not an extreme point. 

Example 2.4 Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface area is equal to
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To see that this solution really corresponds to the maximum of  f , we apply the sufficiency condition of Eq. (2.27). In this case
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Thus Eq. (2.27) becomes
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2.4 MULTIVARIABLE OPTIMIZATION WITH INEQUALITY CONSTRAINTS
[image: ]      (2.30)
[image: ]The inequality constraints in Eq. (2.30) can be transformed to equality constraints by adding nonnegative slack variables,

[image: ]                                                              (2.31)
where the values of the slack variables are yet unknown. The problem now becomes

[image: ]              (2.32)
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[image: ]                                                         (2.33)
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2.4.1 Kuhn–Tucker Conditions

The conditions to be satisfied at a constrained minimum point, X∗, of the problem stated in Eq. (2.30) can be expressed as
[image: ]                                                  (2.34)
[image: ]                                                                            (3.35)
J1 indicate the indices of those constraints that are active at the optimum point.


The Kuhn–Tucker conditions can be stated as follows:
[image: ]                                             (2.36)






Example 2.5 A manufacturing firm producing small refrigerators has entered into a contract to supply 50 refrigerators at the end of the first month, 50 at the end of the second month, and 50 at the end of the third. The cost of producing x refrigerators in any month is given by $(x2 + 1000). The firm can produce more refrigerators in any month and carry them to a subsequent month. However, it costs $20 per unit for any refrigerator carried over from one month to the next. Assuming that there is no initial inventory, determine the number of refrigerators to be produced in each month to minimize the total cost.
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Linear Programming: Simplex Method
3 
3.1 INTRODUCTION

Linear programming is an optimization method applicable for the solution of problems in which the objective function and the constraints appear as linear functions of the decision variables. The constraint equations in a linear programming problem may be in the form of equalities or inequalities.
3.2 APPLICATIONS OF LINEAR PROGRAMMING
The number of applications of linear programming has been so large. One of the early industrial applications of linear programming was made in the petroleum refineries. In general, an oil refinery has a choice of buying crude oil from several different sources with differing compositions and at differing prices. It can manufacture different products, such as aviation fuel, diesel fuel, and gasoline, in varying quantities. The constraints may be due to the restrictions on the quantity of the crude oil available from a particular source, the capacity of the refinery to produce a particular product, and so on. A mix of the purchased crude oil and the manufactured products is sought that gives the maximum profit.









3.3 STANDARD FORM OF A LINEAR PROGRAMMING PROBLEM

The general linear programming problem can be stated in the following standard forms:
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The characteristics of a linear programming problem, stated in standard form, are

1. The objective function is of the minimization type.
2. All the constraints are of the equality type.
3. All the decision variables are nonnegative.

Any linear programming problem can be expressed in standard form by using the following transformations.

1. The maximization of a function f (x1, x2, . . . , xn) is equivalent to the minimization of the negative of the same function
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Example 3.2: State the following LP problem in the standard form

Maximize     subject to the constraints 






Solution
Since  and  are not restricted to be nonnegative, we write them as

 


Where 

Thus the problem becomes









This can be stated as a minimization problem by taking the new objective function as –F and the constraints can be stated as equality by introducing a slack or surplus variable for  type inequality.

The problem can be stated in standard form as:
 Minimize 






3.4 GEOMETRY OF LINEAR PROGRAMMING PROBLEMS

A linear programming problem with only two variables presents a simple case for which the solution can be obtained by using a rather elementary graphical method. Apart from the solution, the graphical method gives a physical picture of certain geometrical characteristics of linear programming problems. The following example is considered to illustrate the graphical method of solution.

Example 3.2 A manufacturing firm produces two machine parts using lathes, milling machines, and grinding machines. The different machining times required for each part, the machining times available on different machines, and the profit on each machine part are given in the following table.
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Determine the number of parts I and II to be manufactured per week to maximize the profit.

SOLUTION

Let the number of machine parts I and II manufactured per week be denoted by x and y, respectively. The constraints due to the maximum time limitations
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A convex polygon consists of a set of points having the property that the line segment joining any two points in the set is entirely in the convex set. In problems having more than two decision variables, the feasible region is called a convex polyhedron
3.5 DEFINITIONS AND THEOREMS

The terminology used in linear programming and some of the important theorems are presented in this section.
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Theorem 3.1 The intersection of any number of convex sets is also convex.

Theorem 3.2 The feasible region of a linear programming problem is convex.

Theorem 3.3 Any local minimum solution is global for a linear programming problem.

Theorem 3.4 Every basic feasible solution is an extreme point of the convex set of feasible solutions.

3.6 SOLUTION OF A SYSTEM OF LINEAR SIMULTANEOUS EQUATIONS

Consider the following system of n equations in n unknowns:
[image: ]                                                   (3.11)
Assuming that this set of equations possesses a unique solution, a method of solving the system consists of reducing the equations to a form known as canonical form. the system of Eqs. (3.11) can be reduced to a convenient equivalent form as follows. By selecting some variable xi and try to eliminate it from all the equations except the j th one (for which aj i is nonzero).

[image: ]               (3.12)
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Perform a new pivot operation by eliminating xs , [image: ], in all the equations except the t th equation, [image: ]the zeros or the 1 in the ith column will not be disturbed. The pivotal operations can be repeated by using a different variable and equation each time until the system of Eqs. (3.11) is reduced to the form

[image: ]
[image: ]                                                               (3.13)
This system of Eqs. (3.16) is said to be in canonical form and has been obtained after carrying out n pivot operations. From the canonical form, the solution vector can be directly obtained as
[image: ]                                                                                  (3.14)
3.7 PIVOTAL REDUCTION OF A GENERAL SYSTEM OF EQUATIONS
Consider a system of m equations in n variables with n ≥ m.

[image: ]                                                                (3.15)

It is possible to reduce this system to an equivalent canonical system from which at least one solution can readily be deduced. If pivotal operations with respect to any set of m variables, say, x1, x2, . . . , xm, are carried, the resulting set of equations can be written as follows:

[image: ]           

(3.16)
One special solution that can always be deduced from the system of Eqs. (3.16) is

[image: ]                                                              (3.17)
This solution is called a basic solution since the solution vector contains no more than m nonzero terms. The pivotal variables xi , i = 1, 2, . . . ,m, are called the basic variables and the other variables xi , i = m + 1,m + 2, . . . , n, are called the nonbasic variables.

It is possible to obtain the other basic solutions from the canonical system of Eqs. (3.16). We can perform an additional pivotal operation on the system after it is in canonical form, by choosing [image: ] (which is nonzero) as the pivot term, q >m, and using any row p (among 1, 2, . . . ,m). The new system will still be in canonical form but with [image: ] as the pivotal variable in place of [image: ]. The variable[image: ], which was a basic variable in the original canonical form, will no longer be a basic variable in the new canonical form. This new canonical system yields a new basic solution (which may or may not be feasible) similar to that of Eqs. (3.17). It is to be noted that the values of all the basic variables change, in general, as we go from one basic solution to another, but only one zero variable (which is nonbasic in the original canonical form) becomes nonzero (which is basic in the new canonical system), and vice versa.

Example 3.3 Find all the basic solutions corresponding to the system of equations

[image: ]
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[image: ][image: ]
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3.8 MOTIVATION OF THE SIMPLEX METHOD

One way to find the optimal solution of the given linear programming problem is to generate all the basic solutions and pick the one that is feasible and corresponds to the optimal value of the objective function. This can be done because the optimal solution, if one exists, always occurs at an extreme point or vertex of the feasible domain. If there are m equality constraints in n variables with n ≥ m, a basic solution can be obtained by setting any of the n − m variables equal to zero. The number of basic solutions to be inspected is thus equal to the number of ways in which m variables can be selected from a set of n variables, that is,

[image: ]

For large values of n and m, this is still a very large number to inspect one by one. Hence what we really need is a computational scheme that examines a sequence of basic feasible solutions, each of which corresponds to a lower value of f until a minimum is reached.

The simplex method of Dantzig is a powerful scheme for obtaining a basic feasible solution; if the solution is not optimal, the method provides for finding a neighboring basic feasible solution that has a lower or equal value of f . The process is repeated until, in a finite number of steps, an optimum is found.

The first step involved in the simplex method is to construct an auxiliary problem by introducing certain variables known as artificial variables into the standard form of the linear programming problem. The primary aim of adding the artificial variables is to bring the resulting auxiliary problem into a canonical form from which its basic feasible solution can be obtained immediately. Starting from this canonical form, the optimal solution of the original linear programming problem is sought in two phases. The first phase is intended to find a basic feasible solution to the original linear programming problem.

3.9 SIMPLEX ALGORITHM

The starting point of the simplex algorithm is always a set of equations, which includes the objective function along with the equality constraints of the problem in canonical form. Thus the objective of the simplex algorithm is to find the vector X ≥ 0 that minimizes the function f (X) and satisfies the equations:

[image: ]                        (3.18)

[image: ]

The basic solution that can readily be deduced from Eqs. (3.18) is

[image: ]                                                                             (3.19)

[image: ]

[image: ]                                                                                            (3.20)


3.9.1 Identifying an Optimal Point

A basic feasible solution is an optimal solution with a minimum objective function values of   [image: ]   if all the cost coefficients [image: ] in Eqs. (3.18) are nonnegative.


Proof : From the last row of Eqs. (3.18), we can write that

[image: ]                                                                                        (3.21)

[image: ]

3.9.2 Improving a Nonoptimal Basic Feasible Solution

From the last row of Eqs. (3.18), we can write the objective function as
[image: ]                                                               (3.22)
[image: ]for the solution given by Eqs. (3.19)
[image: ]
[image: ]                                                                                     (3.23)
Although this may not lead to the greatest possible decrease in f (since it may not be possible to increase xs very far), this is intuitively at least a good rule for choosing the variable to become basic. It is the one generally used in practice because it is simple and it usually leads to fewer iterations than just choosing any [image: ]. If there is a tie-in applying Eq. (3.23), (i.e., if more than one [image: ]has the same minimum value), we select one of them arbitrarily as [image: ]

[image: ]                                                                                 (3.24)

[image: ]                                                                           (3.25)

Since [image: ], Eq. (3.25) suggests that the value of xs should be made as large as possible in order to reduce the value of f as much as possible. However, in the process of increasing the value of xs , some of the variables xi (i = 1, 2, . . . ,m) in Eqs. (3.24) may become negative. It can be seen that if all the coefficients[image: ]. then xs can be made infinitely large without making any xi < 0, i = 1, 2, . . . ,m. In such a case, the minimum value of f is minus infinity and the linear programming problem is said to have an unbounded solution.

On the other hand, if at least one [image: ] is positive, the maximum value that xs can take without making xi negative is [image: ]is . If there are more than one [image: ], the largest value [image: ]that xs can take is given by the minimum of the ratios [image: ]is for which [image: ]Thus

[image: ]                                                                       (3.26)

The choice of r in the case of a tie, assuming that all [image: ] is arbitrary. If any [image: ] for which [image: ]is zero in Eqs. (3.24), xs cannot be increased by any amount. Such a solution is called a degenerate solution.

In the case of a nondegenerate basic feasible solution, a new basic feasible solution can be constructed with a lower value of the objective function as follows. By substituting the value of [image: ] given by Eq. (3.26) into Eqs. (3.24) and (3.25), we obtain

[image: ]                                       (3.27)
[image: ]                                              (3.28) 
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Example 3.5 Infinite Number of Solutions. To demonstrate how a problem having infinite number of solutions
[image: ]
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3.10 TWO PHASES OF THE SIMPLEX METHOD

The problem is to find nonnegative values for the variables x1, x2, . . . , xn that satisfy the equations



[image: ]                                                                (3.29)

[image: ]                            (3.30)

[image: ]

1. Arrange the original system of Eqs. (3.29) so that all constant terms bi are
      positive or zero by changing, where necessary, the signs on both sides of any
of the equations.
2.  Introduce to this system a set of artificial variables y1, y2, . . . , ym (which serve as basic variables in phase I), where each yi ≥ 0, so that it becomes
[image: ]                              (3.31)
Note that in Eqs. (3.31), for a particular i, the [image: ]and the bi may be the negative of what they were in Eq. (3.29) because of step 1.
 The objective function of Eq. (3.30) can be written as

[image: ]                                                                (3.32)

[image: ]


[image: ]                                                                                       (3.33)

and use the simplex algorithm to find xi ≥ 0 (i = 1, 2, . . . , n) and yi ≥ 0 (i = 1, 2, . . . ,m) which minimize w and satisfy Eqs. (3.31) and (3.32). Consequently, consider the array

[image: ]                    (3.34)

[image: ]

[image: ]         (3.35)

[image: ]        (3.36)
[image: ]                                                                 (3.37)

Equations (3.35) provide the initial basic feasible solution that is necessary for starting phase I.

4. In Eq. (3.34), the expression of w, in terms of the artificial variables y1, y2, . . . , ym is known as the infeasibility form. w has the property that if as a result of phase I, with a minimum of w >0, no feasible solution exists for the original linear programming problem stated in Eqs. (3.29) and (3.30), and thus the procedure is terminated. On the other hand, if the minimum of w = 0, the resulting array will be in canonical form and hence initiate phase II by eliminating the w equation as well as the columns corresponding to each of the artificial variables y1, y2, . . . , ym from the array.
[image: ]
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Nonlinear Programming: One-Dimensional Minimization Methods

4 
4.1 INTRODUCTION

If the optimization problem involves the objective function and/or constraints that are not stated as explicit functions of the design variables or which are too complicated to manipulate, we cannot solve it by using the classical analytical methods.

The basic philosophy of most of the numerical methods of optimization is to produce a sequence of improved approximations to the optimum according to the following scheme:




[image: ]

[image: ]                                                                                                   (4.1)

[image: ]

The iterative procedure indicated by Eq. (4.1) is valid for unconstrained as well as constrained optimization problems. The procedure is represented graphically for a hypothetical two-variable problem in Fig. 4.1. Equation (4.1) indicates that the efficiency of an optimization method depends on the efficiency with which the quantities λ∗i and Si are determined.

[image: ]
Figure 4.1 Iterative process of optimization.







If f (X) is the objective function to be minimized, the problem of determining λ∗i reduces to finding the value λi = λ∗i that minimizes f (Xi+1) = f (Xi + λiSi) = f (λi) for fixed values of Xi and Si. Since f becomes a function of one variable λi only, the methods of finding λ∗i in Eq. (4.1) are called one-dimensional minimization methods.

Several methods are available for solving a one-dimensional minimization problem. These can be classified as shown in Table 4.1.


Table 4.1 One-dimensional Minimization Methods

[image: ]

In the numerical methods of optimization, an opposite procedure is followed in that the values of the objective function are first found at various combinations of the decision variables and conclusions are then drawn regarding the optimal solution. The elimination methods can be used for the minimization of even discontinuous functions. The quadratic and cubic interpolation methods involve polynomial approximations to the given function. The direct root methods are root finding methods that can be considered to be equivalent to quadratic interpolation.

4.2 UNIMODAL FUNCTION

A unimodal function is one that has only one peak (maximum) or valley (minimum) in a given interval. Thus a function of one variable is said to be unimodal if, given that two values of the variable are on the same side of the optimum, the one nearer the optimum gives the better functional value (i.e., the smaller value in the case of a minimization problem). This can be stated mathematically as follows:
[image: ]



Some examples of unimodal functions are shown in Fig. 4.2. Thus a unimodal function can be a nondifferentiable or even a discontinuous function. If a function is known to be unimodal in a given range, the interval in which the minimum lies can be narrowed down provided that the function values are known at two different points in the range.

[image: ]
Figure 4.2 Unimodal function.


For example, consider the normalized interval [0, 1] and two function evaluations within the interval as shown in Fig. 4.3. There are three possible outcomes, namely, f1 < f2, f1 >f2, or f1 = f2. If the outcome is that f1 < f2, the minimizing x cannot lie to the right of x2. Thus that part of the interval [x2, 1] can be discarded and a new smaller interval of uncertainty, [0, x2], results as shown in Fig. 4.3a. If f (x1)>f (x2), the interval [0, x1] can be discarded to obtain a new smaller interval of uncertainty, [x1, 1] (Fig. 4.3b), while if f (x1) = f (x2), intervals [0, x1] and [x2, 1] can both be discarded to obtain the new interval of uncertainty as [x1, x2] (Fig. 4.3c). Further, if one of the original experiments remains within the new interval, as will be the situation in Fig. 4.3a and b, only one other experiment need be placed within the new interval in order that the process be repeated. In situations such as Fig. 4.3c, two more experiments are to be placed in the new interval in order to find a reduced interval of uncertainty.


[image: ]
Figure 4.3 Outcome of first two experiments: (a) f1 < f2; (b) f1 >f2; (c) f1 = f2.






4.3 UNRESTRICTED SEARCH

In most practical problems, the optimum solution is known to lie within restricted ranges of the design variables. In some cases this range is not known, and hence the search has to be made with no restrictions on the values of the variables.
4.3.1 Search with Fixed Step Size

The most elementary approach for such a problem is to use a fixed step size and move from an initial guess point in a favorable direction (positive or negative). The step size used must be small in relation to the final accuracy desired. Although this method is very simple to implement, it is not efficient in many cases. This method is described in the following steps:

[image: ]

4.3.2 Search with Accelerated Step Size

Although the search with a fixed step size appears to be very simple, its major limitation comes because of the unrestricted nature of the region in which the minimum can lie. For example, if the minimum point for a particular function happens to be xopt = 50, 000 and, in the absence of knowledge about the location of the minimum, if x1 and s are chosen as 0.0 and 0.1, respectively, we have to evaluate the function 5,000,001 times to find the minimum point. This involves a large amount of computational work. An obvious improvement can be achieved by increasing the step size gradually until the minimum point is bracketed. A simple method consists of doubling the step size as long as the move results in an improvement of the objective function. Several other improvements of this method can be developed. One possibility is to reduce the step length after bracketing the optimum in (xi−1, xi ). By starting either from xi−1 or xi , the basic procedure can be applied with a reduced step size. This procedure can be repeated until the bracketed interval becomes sufficiently small. The following example illustrates the search method with accelerated step size.


Example 4.1 Find the minimum of f = x(x − 1.5) by starting from 0.0 with an initial step size of 0.05.

[image: ]

[image: ]

4.4 EXHAUSTIVE SEARCH

The exhaustive search method can be used to solve problems where the interval in which the optimum is known to lie is finite. Let xs and xf denote, respectively, the starting and final points of the interval of uncertainty. The exhaustive search method consists of evaluating the objective function at a predetermined number of equally spaced points in the interval (xs , xf ), and reducing the interval of uncertainty using the assumption of unimodality. Suppose that a function is defined on the interval (xs , xf ) and let it be evaluated at eight equally spaced interior points x1 to x8. Assuming that the function values appear as shown in Fig. 4.4, the minimum point must lie, according to the assumption of unimodality, between points x5 and x7. Thus the interval (x5, x7) can be considered as the final interval of uncertainty.




In general, if the function is evaluated at n equally spaced points in the original interval of uncertainty of length L0 = xf − xs , and if the optimum value of the function (among the n function values) turns out to be at point xj , the final interval of uncertainty is given below:

[image: ]                                                                           (4.2)


[image: ]

Figure 4.4 Exhaustive search.
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Example 4.2 Find the minimum of f = x(x − 1.5) in the interval (0.0, 1.00) to within 10% of the exact value.
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4.5 INTERVAL HALVING METHOD

[image: ]
[image: ]Fig. (4.5a), [image: ]
[image: ]

[image: ]                                                                                                                (4.3)


[image: ]
Figure 4.5 Possibilities in the interval halving method: (a) f2 >f0 >f1; (b) f1 >f0 >f2; (c) f1 >f0 and f2 >f0.

Example 4.3 Find the minimum of f = x(x − 1.5) in the interval (0.0, 1.0) to within 10% of the exact value.
[image: ]
[image: ]

4.6 FIBONACCI METHOD

This method, like many other elimination methods, has the following limitations:
[image: ]
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[image: ]                                                                                                   (4.4)
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[image: ]                                                  (4.5)
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[image: ]                                                    (4.6)
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[image: ]                                                                                   (4.7)
[image: ]                            (4.8)
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[image: ]                                                                               (4.9)
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[image: ]                                   (4.10)
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[image: ]                                                                                  (4.11)
[image: ]                                                                                     (4.12)
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[image: ]                                                                                          (4.13)
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[image: ]                                                                                           (4.14)
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4.7 GOLDEN SECTION METHOD

[image: ]
[image: ]                                                                                      (4.15)

[image: ]                                                   (4.16)





[image: ]                              (4.17)

[image: ]                                     (4.18)
[image: ]                                     (4.19)
[image: ]                                        (4.20)
Eq. (4.19) can be expressed as

[image: ]                                      (4.21)
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[image: ]                                                                    (4.22)

Example 4.4 Minimize the function

[image: ]
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4.8 CUBIC INTERPOLATION METHOD

The cubic interpolation method finds the minimizing step length λ∗ in four stages. It makes use of the derivative of the function f :

[image: ]

[image: ]
[image: ]  (Fig. 4.6)

[image: ]

[image: ]                                                                         (4.23)

[image: ]
Figure 4.6 Minimum of f (λ) lies between A and B.

is used to approximate the function f (λ) between points A and B, we need to find the values fA = f (λ = A), f′A = df/dλ(λ = A), fB = f (λ = B), and f′B = df/dλ(λ = B) in order to evaluate the constants, a, b, c, and d in Eq. (4.23). By assuming that A ≠ 0, we can derive a general formula for ˜λ∗. From Eq. (4.23) we have

[image: ]                                                                                (4.24)

Equations (4.24) can be solved to find the constants as
[image: ]                                     (4.25)
[image: ]                        (4.26)
[image: ]                                                 (4.27)
[image: ]                               (4.28)
[image: ]                                        (4.29)
The necessary condition for the minimum of h(λ) given by Eq. (4.23) is that 
[image: ]                           (4.30)

[image: ]
[image: ]                                                                             (4.31)

By substituting the expressions for b, c, and d given by Eqs. (4.26) to (4.28) into Eqs. (4.30) and (4.31), we obtain

[image: ]                                                                (4.32)

[image: ]                            (4.33)
[image: ]                                                     (4.34)
By specializing Eqs. (4.25) to (4.34) for the case where A = 0, we obtain 

[image: ]                                                                              (4.35)
[image: ]                                                                               (4.36)
[image: ]                          (4.37)
The two values of ˜λ∗ in Eqs. (4.32) and (4.35) correspond to the two possibilities for the vanishing of h′(λ) [i.e., at a maximum of h(λ) and at a minimum]. To avoid imaginary values of Q, we should ensure the satisfaction of the condition
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[image: ]                                                                                       (4.38)
[image: ]                                                                               (4.39)
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Example 5.11 Find the minimum of f = λ5 − 5λ3 − 20λ + 5 by the cubic interpolation method.
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Nonlinear Programming: Unconstrained Optimization Techniques
5 
5.1 INTRODUCTION

This chapter deals with the various methods of solving the unconstrained minimization problem:

[image: ]                                                        (5.1)

It is true that rarely a practical design problem would be unconstrained; still, a study of this class of problems is important for the following reasons:

1. The constraints do not have significant influence in certain design problems.
2. Some of the powerful and robust methods of solving constrained minimization problems require the use of unconstrained minimization techniques.
3. The study of unconstrained minimization techniques provide the basic understanding necessary for the study of constrained minimization methods.
4. The unconstrained minimization methods can be used to solve certain complex engineering analysis problems.


Several methods are available for solving an unconstrained minimization problem. These methods can be classified into two broad categories as direct search methods and descent methods as indicated in Table 5.1.

Table 5.1 Unconstrained Minimization Methods

[image: ]

The direct search methods require only the objective function values but not the partial derivatives of the function in finding the minimum and hence are often called the nongradient methods. The direct search methods are also known as zeroth-order methods since they use zeroth-order derivatives of the function. These methods are most suitable for simple problems involving a relatively small number of variables. These methods are, in general, less efficient than the descent methods. The descent techniques require, in addition to the function values, the first and in some cases the second derivatives of the objective function.	


All the unconstrained minimization methods are iterative in nature and hence they start from an initial trial solution and proceed toward the minimum point in a sequential manner

[image: ]                                                                                                  (5.2)
[image: ]

Different iterative optimization methods have different rates of convergence. In general, an optimization method is said to have convergence of order p if

[image: ]                                                                    (5.3)
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[image: ]                                                                                  (5.4)

5.2 UNIVARIATE METHOD

In this method we change only one variable at a time and seek to produce a sequence of improved approximations to the minimum point. By starting at a base point Xi in the ith iteration, we fix the values of n − 1 variables and vary the remaining variable. Since only one variable is changed, the problem becomes a one-dimensional minimization problem and any of the methods discussed in Chapter 4 can be used to produce a new base point Xi+1. The search is now continued in a new direction. This new direction is obtained by changing any one of the n − 1 variables that were fixed in the previous iteration. In fact, the search procedure is continued by taking each coordinate direction in turn. After all the n directions are searched sequentially, the first cycle is complete and hence we repeat the entire process of sequential minimization. The procedure is continued until no further improvement is possible in the objective function in any of the n directions of a cycle. The univariate method can be summarized as follows:
[image: ]               (5.5)
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[image: ]                                                                          (5.6)
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5.3 STEEPEST DESCENT (CAUCHY) METHOD

The use of the negative of the gradient vector as a direction for minimization was first made by Cauchy in 1847. In this method we start from an initial trial point X1 and iteratively move along the steepest descent directions until the optimum point is found. The steepest descent method can be summarized by the following steps:
[image: ]
[image: ]                                                                              (5.7)

[image: ]         (5.8)
[image: ]

[image: ]
[image: ][image: ]
[image: ]
[image: ]


1. When the change in function value in two consecutive iterations is small:


[image: ]                                                                               (5.0)

2. When the partial derivatives (components of the gradient) of f are small:

[image: ]                                                                          (5.10)

3. When the change in the design vector in two consecutive iterations is small:

[bookmark: _GoBack][image: ]                                                                                            (5.11)
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